Intellectual Capital: More Than the
Interaction of Competence x Commitment
Abstract:
Ulrich (1998) has suggested that intellectual capital is a product of competence and
commitment. This broad proposition, though intuitively appealing, does not identify
theoretical links between these variables, and has little empirical foundation. This
paper draws on organisational behaviour theory to propose a model that specifies
mechanisms, intermediate linkages and boundary conditions that predict intellectual
capital. In doing so, we respond to a recent call for research that is specific about
human resource management–firm effectiveness relationships. Moderated
relationships between competence, commitment and control are proposed as
predictors of intellectual capital. Implications for future theory and practice are
highlighted.
Keywords:
INTELLECTUAL CAPITAL; COMPETENCE; COMMITMENT; CONTROL.
1. Introduction
The advance resource-based view of the firm suggests that intellectual capital and the
potential to transform it into skilled action provides firms with competitive
advantage (Drucker 1999; Prahalad & Hamel 1998). Ulrich (1998) has proposed an
innovative formula based on Human Resource Management (HRM) principles:
intellectual capital = competence x commitment. Ulrich however, does not offer
theoretical or empirical causal links between the variables in the formula (Burr &
Girardi 2001), nor does he include situational influences that may have an impact
on intellectual capital.
Ferris, Hochwarter, Buckley, Harrell-Cook & Frink (1999) suggest that our
discipline has numerous under-developed or specified constructs, leading to the
criticism that the ‘black-box’ phenomenon prevails in our understanding of HRM
effectiveness. Ferris et al. (1999) suggest some new directions for HRM research,
which could heighten the impact of Ulrich’s formula in terms of both HRM
research and practice. First, they recommend that HRM research should be specific
about what HRM effectiveness criterion is being measured. There is very little in
the literature at present that clearly evaluates the impact of HR practices on the
firm’s holdings of intellectual capital. There is a need therefore for research that
specifically links HR practices from an organisational behaviour perspective with
the value of a firm’s intellectual capital. Ulrich’s formula provides a useful
conceptual basis for measuring intellectual capital as the outcome of effective HR
practices. It also avoids the use of accounting principles, which are currently used
to calculate intellectual capital (Flamholz 1999), but omit individual and
psychological factors.
Second, Ferris and his colleagues highlight the need for research that unpacks
the ‘black-box’ by specifying psychological mechanisms: the intermediate linkages
among these mechanisms and the boundary conditions that underpin HRM—firm
outcome linkages. Ulrich’s formula (1998) does indeed draw on psychologically
based, cognitive explanations for predicting a company’s intellectual capital.
However, it is not specific about the psychological mechanisms associated with
competence and commitment (both of which are multi-faceted), and their impact on
intellectual capital. Nor does it take into account boundary conditions that can
activate, appreciate or depreciate stocks of intellectual capital as a result of high
competence and commitment. In this paper, we extend Ulrich’s model based on
organisational behaviour research and theory to suggest that intellectual capital is
determined by factors in addition to specific facets of competence and commitment
and discuss implications for future research and practice.
2. Intellectual Capital Defined
Current definitions of intellectual capital are ambiguous. At present it is no one
particular entity, but a rather broad and vague concept that needs to be supported
by and composed of a variety of interrelated elements (Bukh, Larsen & Mouritsen
2001). A widely used definition describes intellectual capital as the knowledge,
information, intellectual property and experience that can be put to use to create
wealth (Stewart 1997). It is the future earning potential from a combination of
human capital (brains, skills, insights), and the potential of an organisation’s people
(Edvinsson 2000). Intellectual capital, which is a sub-set of an organisation’s
market capital, is generally categorised into two elements (see figure 1): human
capital and structural capital (Edvinsson 1997; Stewart 1997; Sveiby 1997). Human
capital has been described as being made up of four facets: ability, behaviour,
effort and time (Davenport 1999), all of which are owned and controlled by
workers. It is at the worker’s discretion to use personal initiative at work (Frese,
Kring, Soose & Zempel 1996) and decide when, what, where and how they will
use the skills they possess to add value to the firm’s operations. Structural capital
on the other hand has been described as ‘the backbone of the organisation’, and
includes not only intellectual property but also infrastructure consisting of an
organisation’s strategies, processes and policies (Dzinkowski 2000).
Ulrich’s definition of intellectual capital focuses solely on human capital and
does not take into account any of its structural dimensions. Edvinsson, Kitts and
Beding (2000) specifically state that intellectual capital is about a fit between
essential state variables (market and customer value) and free parameters (e.g.
competence and commitment in Ulrich’s formula and organisational processes,
systems and structures), which are adjustable variables that can be changed through
managerial intervention. Like Ulrich, Edvinsson, Kitts and Beding (2000) believe
that the systematic transformation of human capital into value requires structural
capital as a multiplier, to realize sustainable earnings potential for the organisation.
Converting knowledge into something that has value creates intellectual
capital (Drucker 1999; Dzinkowski 2000). This implies that knowledge is only
useful for what it does, how it is used and acted upon. In order to sustain the value
of knowledge as an internal good, it has to be put to use or activated through
opportunities provided by the work system and the individual’s willingness to
apply their abilities and skills (Roselander 2000). Therefore, value creation results
from the interaction of the human and structural components of intellectual capital.
The conclusions to be drawn from the definition of intellectual capital is that
it is a product of:
• Capacity which is the knowledge, skills, abilities, information and experience
of people;
• Willingness of people to apply capacity; and
• Opportunity provided by the work system to activate stocks of intellectual
capital.
Capacity reflects the competence component of the Ulrich (1998) formula, and
willingness mirrors commitment. The opportunity element however, is missing in
Ulrich’s conception of intellectual capital. Our aim is to extend the Ulrich model to
include this missing element. Our discussion proceeds in three steps. The first step
specifies psychological mechanisms and their intermediate linkages which
underpin the components of human capital covered in Ulrich’s model. The second
step identifies boundary conditions (or structural capital) in the form of job control
as an additional element in the model. The third step draws together a model that
presents intellectual capital as the outcome of the interaction of competence and
commitment with job control.
Figure 1
Components of Market Capital
Intellectual Property Intangible Assets
Innovation Capital Process Capital
Customer Capital Organisation Capital
Human Capital Structural Capital
Financial Capital Intellectual Capital
Market Capital
3. Unpacking Ulrich’s Formula
Competence is a multi-dimensional construct. The rationalist approach couches
competence in terms of the personal attributes of workers such as education level,
which is often used as an objective measure of intellectual capital (Dzinkowski
2000). This approach is fairly narrow. A broader and more common definition of
competence in organisational settings is that it includes an individual’s
demonstrated knowledge, skills and abilities (Ulrich, Brockbank, Yeung & Lake
1995).
Sandberg (2000) expressed concerns that the rationalist approach defines
competence in indirect terms, as these descriptions do not indicate whether the
worker uses these attributes. Sandberg advocates the use of an interpretative
approach to discover the workers’ definition and understanding of their jobs. In
Sandberg’s view, this interpretation determines the workers’ definition of job
competence and therefore the range of skills they utilise at work.
Bandura (1986) also suggested that knowledge and skills possessed are not
enough. One must also consider a worker’s efficacy beliefs about being able to
mobilise these skills for successful performance. Self-efficacy is described as the
‘beliefs in one’s capabilities to mobilise the motivation, cognitive resources and
courses of action to meet given situational demands’ (Bandura & Wood 1989,
p. 408). Efficacy beliefs are strongly linked to learning and organisational
performance (Stajkovic & Luthans 1998), through their motivational properties.
The conception of competence therefore needs to extend beyond capacity
defined as knowledge, skills and abilities (KSAs) to include more dynamic
elements such as skill utilisation and efficacy beliefs, which convert KSAs into true
intellectual capital. This leads to our first proposition:
Proposition 1: In valuing intellectual capital, competence needs to be measured as
a function of rationalist measures of capacity (KSAs),
interpretative measures (skill utilisation, determined by the
worker’s understanding of job requirements) and cognitions of
capability (efficacy beliefs).
Commitment is also a multi-faceted construct. It has been defined as a job attitude
or belief that reflects ‘the relative strength of an individual’s identification and
involvement in a particular organisation’ (Steers 1977, p. 46). A frequently used
operationalisation of organisational commitment is the three-factor model
developed by Meyer and Allen (1992). The factors are continuance commitment,
normative commitment, and affective commitment. Ulrich not only fails to
discriminate between these facets of commitment but also does not take into
consideration the differential impact of the three facets on intellectual capital as
discussed below.
Affective commitment is the most studied dimension (Dunham, Grube &
Castaneda 1994). Affective commitment is often described as loyalty to the
organisation, demonstrated by emotional attachment and identification with
organisational goals (Meyer & Allen 1984). This type of commitment therefore
reflects the willingness of people to provide discretionary effort. Continuance
commitment is attachment to the organisation induced by recognition of the costs
of leaving the firm. Continuance commitment is therefore essential for retention of
intellectual capital. The final component of organisational commitment is
normative commitment, which reflects the employees’ feelings of obligation to
remain with the organisation. These obligations are compiled through identification
with the organisation’s values and culture. This facet of commitment ties in with
elements of structural capital, which are the organisation-based sources of
intellectual capital such as organisational processes, systems, culture, values and
management philosophy (Dzinkowski 2000). This leads to our second proposition:
Proposition 2: Affective, continuance and normative commitment should all be
included when valuing intellectual capital.
Ulrich (1998) suggested that commitment is gained by engaging employees’
emotional energy, avoiding burnout and stress through high involvement work
practices based on high levels of employee autonomy, and self-regulation (job
control). Ulrich therefore acknowledges that structural variables have an impact on
commitment, but does not include them in his model. Similarly, there is a growing
body of research that highlights that competence can be influenced by structural
factors, specifically job control (Burr & Cordery 2001; Parker & Wall 1998). The
next part of the discussion therefore examines job control as a major boundary
condition that influences both the capacity and willingness elements of the Ulrich
formula.
4. Job Control as a Boundary Condition
Empirical and theoretical research supports the proposition that job design (a
structural capital variable) and in particular job control or work autonomy
(Hackman & Oldham 1976), has the potential to activate value-creating intellectual
capital mechanisms. Within the dominant job design paradigms, job control is
viewed as allowing individuals to act directly on the environment so as to produce
desired outcomes or avoid negative ones (behavioural control) and/or allowing a
choice among several possible actions, outcomes, or tasks (cognitive control)
(Wall, Corbett, Martin, Clegg & Jackson 1990).
A series of job redesign studies within advanced manufacturing systems by
Wall and colleagues (Jackson & Wall 1991; Wall et al. 1990; Wall, Jackson &
Davids 1992), has provided evidence that significant performance improvements
within high control job designs arose not due to employees working harder, but
rather as a result of the development of new knowledge, which enabled the
prevention of errors. These findings closely approximate the propositions of the
demand-control model of job design that mastery outcomes are engendered by
active, high control jobs (Karasek & Theorell 1990). Evidence substantiating this
‘active learning’ finding is emerging in other work environments. For example, job
control has been found to influence skill utilisation (Girardi 1999), job related
efficacy beliefs (Burr & Cordery 2001; Parker 1998; Speier & Frese 1997), and job
crafting (Wrzesniewski & Dutton 2001) in work settings as diverse as process
control, the knowledge work environment and in the service industry.
High Performance Work Systems (HPWS) (Huselid 1995; Lawler, Mohrman
& Ledford 1995), predicated on high control-based job design, have also been
shown to contribute to the development of intellectual capital. Emerging evidence
shows that HPWS are instrumental in creating committed, long-term employee
relationships, which have an impact on firm performance (see Lawler et al. 1995;
Pfeffer 1998). Broad justifications for these outcomes are based on principles of
worker empowerment ( Spreitzer 1995; Thomas & Velthouse 1990).
However, HPWS have been demonstrated to be effective only when three
pre-conditions exist (Macduffie 1995). First, employees must be competent and
possess knowledge and skills valued by the firm. Second, employees must be
willing and motivated to apply these skills through voluntary effort. Third,
employees must have the opportunity to contribute to the firm’s business or
production strategy through discretionary effort. It is evident therefore that an
interaction of individual competence, willingness (commitment) and opportunity
(via job control) is needed if positive outcomes are to be recognised from systems
that were designed to enhance intellectual capital (Huselid 1995). This leads to our
third proposition:
Proposition 3: Job control will moderate the impact of competence and
commitment on intellectual capital.
5. The Extended Model
The discussion so far has highlighted two issues. First, there is a need to
decompose the broad elements of Ulrich’s existing formula for valuing intellectual
capital to include specific psychological mechanisms. Second, the formula needs to
be expanded to include job control as a boundary condition. An expanded formula
for valuing intellectual capital is therefore proposed:
Proposition 4: Intellectual Capital = Competence x Commitment x Control
In which:
Competence = Rationalist measures of capacity (KSAs), interpretative measures
(skill utilisation) and cognitions of capability (efficacy beliefs);
Commitment = Affective, continuance and normative commitment; and
Control = Work autonomy.
There are a number of organisational behaviour models that support this three-way
interaction. For example, Amabile’s (1988) multiplicative componential model of
creativity and innovation in organisations includes organisational components
similar to control (resources, motivation to innovate, management practices) and
individual components similar to competence and commitment (skills in creative
thinking and the task domain, motivation). Another example is Wrzesniewski and
Dutton’s (2001) job crafting model that proposes that interactive relationships
between ability, motivation and opportunities provided by job control determines
job crafting or role redefinition in response to dynamic job requirements. Similarly,
Blumberg and Pringle (1982) proposed a simple model in which job performance is
the outcome of the moderated relationships between the willingness and capacity of
individuals and the opportunity provided by the organisation to perform.
6. Implications for Future Research and Practice
The debate about valuing intellectual capital has been dominated by practitioners to
date (Bukh et al. 2001; Larsen, Bukh & Mouritsen 1999). It is fitting therefore to
draw out the practical implications of the proposed model first and then the agenda
for future research.
The accounting profession has long been interested in assigning monetary
value for intellectual capital, in spite of its intangible nature. However, it is
recognised that existing assessments such as the difference between the firm’s
market and financial or book value, the Tobin’s q ratio, and the calculated
intangible value (CIV) measure are not useful indicators of intellectual capital
(Dzinkowski 2000; Larsen et al. 1999). It has been suggested as a result, that
intellectual capital has to be defined on its own terms (Larsen et al., 1999). In this
paper we have proposed an organisational behaviour theory-based formula to do
this.
While it may be difficult to assign financial value to intellectual capital using
the proposed formula, we believe that it adds structure to efforts towards the
development of intellectual capital statements (Bukh et al. 2001; Larsen et al.
1999) elsewhere. Such statements describe activities that management might apply
in order to mobilise intellectual capital and specify how it is drawn upon to produce
organisational benefits. In keeping with the proposed formula, intellectual capital
statements make connections between intellectual resources, the motivation
directed towards use of these resources, and activities that draw upon them (Bukh
et al. 2001).
HPWS are one set of management activities that can enable the utilisation of
capabilities based on employee commitment and empowerment (Tomer 2001). The
message therefore for organisations interested in increasing their intellectual
capital, is that they need to pay attention to all the different facets of competence,
commitment and control and put into place complementary ‘bundles’ of HRM
practices. In doing so, the visible consequences of how these three intellectual
capital elements interact can be observed and can collectively provide a clearer
definition of intellectual capital. This responds to Ferris et al.’s (1999) suggestion
that HRM research should be specific about what HRM effectiveness is being
measured for—in this case valuing intellectual capital.
The research agenda is determined by Ferris et al.’s second suggestion, which
highlights the need for research that unpacks the ‘black-box’ by specifying
psychological mechanisms, intermediate linkages between them and boundary
conditions that underpin HRM—firm outcome linkages. This paper has sought to
address this suggestion in the development of an expanded interactive model for
valuing intellectual capital, which serves as a framework for future research.
There is a need for empirical research, to test the intermediate linkages both
between and within the elements of the expanded intellectual capital formula. It is
expected that when levels of job control are high, and competence and commitment
are high, intellectual capital will be maximised. However, how do the various
facets of control, commitment and competence influence this maximisation? In
order to answer this question, two avenues need to be explored.
The first is to deal with the validation and/or development of measures for the
constituents of competence, commitment and control. Whilst psychometrically
sound measures of job control (e.g. Jackson & Wall 1991) and commitment (Meyer
& Allen 1992) are available, measures of competence need further refinement
(Sandberg 2000).
The second is to empirically test for an interaction effect. Although
methodological limitations regarding interaction analysis exist (Jaccard, Turrisi &
Wan 1990), and must be acknowledged, the theoretical and practical importance of
moderated relationships exceed these concerns (Baron & Kenny 1986; Karasek &
Theorell 1990). Some of the main methodological obstacles are: the issue of
multicollinearity between the formula variables; the impact of measurement error
which can result in biased estimates and lead to statistical power problems thereby
undermining significance tests; and that effects sizes reported in interaction studies
in industrial and organisational psychology tend to be small (Jaccard & Wan 1996).
However recent developments in testing interaction effects with structural equation
modelling (Schumacker & Marcoulides 1998) provide avenues to overcome some
of these difficulties.
A preliminary empirical test of Ulrich’s formula (Burr & Girardi 2001) has
found support for the two-way interaction between competence and commitment in
predicting intellectual capital. The agenda for future research to test the three-way
interaction includes the development of innovative methodologies in addition to
conventional statistical methods. One suggestion is to follow the methodology
adopted by the Danish Intellectual Capital Project (Bukh et al. 2001). This project
is testing the use of a combination of quantitative and qualitative measures such as
statistical information, internal ratios, measurement of effects and improvements,
knowledge narratives, stakeholder reports and gap analysis to identify optimum
stocks of intellectual capital and its firm-specific components of intellectual capital
and management challenges. The field of accounting for intangible assets (Lev
1997), and development of measures such as the intellectual capital multiplier
(Ã…berg & Edvinsson 2001), also provides opportunities for cross-disciplinary
research for quantifying the human and structural components of the intellectual
capital formula. Other approaches such as Mayo’s (2001) Human Capital Monitor
and Sveiby’s (1997) Intangible Assets Monitor measure intellectual capital as a
metric that incorporates human asset value, human resource costs and revenue.
Future research will benefit from using such objective measures of intellectual
capital as the dependent variable. Empirical tests of the predictive validity of our
expanded formula against each of these measures of intellectual capital will be
challenging. However it is an area worthy of research efforts if it highlights the
contribution of organisational behaviour and HRM in the valuation of a firm’s
intellectual capital.
References
Amabile, T.M. 1988, ‘A model of organisational innovation’, in
Research in OrganisationalBehaviour
, eds. B.M. Straw & L. L. Cummings, vol. 10, pp. 123–67, JAI Press, Greenwich.Ã…berg, D. & Edvinsson, L. 2001, ‘A first investigation of enablers shaping intellectual capital’, in
4
th Intangibles Conference on Advances in the Measurement of Intangible (Intellectual)Capital
, May 17–18, New York University, Stern School of Business, New York.Bandura, A. 1986, Social Foundations of Thought and Action: A Social Cognitive Theory, Prentice
Hall, Englewood Cliffs.
Bandura, A. & Wood, R. 1989, ‘Effect of perceived controllability and performance standards on
self-regulation of complex decision making’, Journal of Personality and Social Psychology,
vol. 56, no. 5, pp. 805–14.
Baron, R.M. & Kenny, D.A. 1986, ‘The moderator-mediator variable distinction in social
psychological research: Conceptual, strategic, and statistical considerations’,
Journal ofPersonality and Social Psychology
, vol. 51, no. 6, pp. 1173–82.Blumberg, M. & Pringle, C.D. 1982, ‘The missing opportunity in organizational research: Some
implications for a theory of work performance’, Academy of Management Review, vol. 7,
pp. 560–9.
Bukh, P.N., Larsen, H.T. & Mouristen, J. 2001, ‘Constructing intellectual capital statements’,
Scandinavian Journal of Management, vol. 17, pp. 87–108.
Burr, R. & Cordery. J.L. 2001, ‘Self-management efficacy as a mediator of the relation between
job design and employee motivation’, Human Performance, vol. 14, no. 1, pp. 27–44.
Burr, R & Girardi, A. 2001, ‘The interaction between competence and commitment as a predictor
of human capital within the firm’, Interactive Papers, Academy of Management Conference, 5–
10 August, Washington D.C. http://aomdb.pace.edu/InteractivePapers/pdf/30583.pdf
Davenport, T.O. 1999, Human Capital: What It Is And Why People Invest In It, Jossey Bass, San
Francisco.
Drucker, P.F. 1999, ‘Knowledge-worker productivity: The biggest challenge’,
CaliforniaManagement Review
, vol. 41, no. 2, pp. 79–94.Dunham, R.B., Grube, J.A. & Castaneda, M.B. 1994, ‘Organizational commitment: the utility of
an integrative definition’, Journal of Applied Psychology, vol. 79, pp. 370–80.
Dzinkowski, R. 2000, ‘The measurement and management of intellectual capital: An
introduction’, Management Accounting, February, pp. 32–6.
Edvinsson, L. 1997, ‘Developing intellectual capital at Skandia’, Long Range Planning, vol. 30,
no. 3, pp. 266–373.
Edvinsson, L. 2000, ‘Some perspectives on intangibles and intellectual capital’,
Journal ofIntellectual Capital
, vol. 1, no. 1, pp. 12–13.Edvinsson, L., Kitts, B. & Beding, T. 2000, ‘The next generation of IC measurement: The digital
IC landscape’, Journal of Intellectual Capital, vol. 1, no. 3, pp. 263–72.
Ferris, G.R., Hochwarter, W.A., Buckley, M.R., Harrell-Cook, G. & Frink, D.D. 1999, ‘Human
resource management: Some new directions’, Journal of Management, vol. 25, no. 3, pp. 385–
415.
Flamholz, E.G. 1999, Human Resource Accounting, 3
rd Edition, Kluwer Academic Publishers,Boston.
Frese, M., Kring, W., Soose, A. & Zempel, J. 1996, ‘Personal initiative at work: Differences
between East and West Germany’, Academy of Management Journal, vol. 39, pp. 37–63.
Girardi, A. 1999, Skill Utilisation: An Investigation of its Role in Job Design Theory, unpublished
doctoral dissertation, Department of Organizational and Labour Studies, University of Western
Australia.
Hackman, J.R. & Oldham, G.R. 1976, ‘Motivation through the design of work: Test of a theory’,
Organisational Behaviour and Human Performance, vol. 15, pp. 250–79.
Huselid, M.A. 1995, ‘The impact of human resources management practices on turnover,
productivity and corporate financial performance’, Academy of Management Journal, vol. 38,
pp. 635–72.
Jaccard, J., Turrisi, R. & Wan, C.K. 1990, Interaction Effects in Multiple Regression, Sage
Publications, Newbury Park, California.
Jaccard, J. & Wan, C.K. 1996, LISREL Approaches to Interaction Effects in Multiple Regression,
vol. 07–114, Sage Publications, Thousand Oaks, California.
Jackson, P.R. & Wall, T.D. 1991, ‘How does operator control enhance performance of advanced
manufacturing technology?’ Ergonomics, vol. 34, no. 10, pp. 1301–11.
Karasek, R. & Theorell, T. 1990, Healthy Work, Basic Books Inc Publications, New York.
Larsen, H.T., Bukh, P.N.D. & Mouritsen, J. 1999, ‘Intellectual capital statements and knowledge
management: Measuring, reporting, acting’, Australian Accounting Review, vol. 9, no. 3,
pp. 15–26.
Lawler, E.E. Mohrman, S.A. & Ledford, G.E. 1995,
Creating High Performance Organizations:Practices and Results of Employee Involvement and Total Quality Management in Fortune
1000 Companies,
Jossey-Bass, San Francisco.Lev, B. 1997, ‘The old rules no longer apply’, Forbes, April 7, pp. 34–7.
Macduffie, J.P. 1995, ‘Human resource bundles and manufacturing performance: Organisational
logic and flexible manufacturing systems in the world auto industry’,
Industrial and LabourRelations Review
, vol. 48, no. 2, pp. 197–221.Mayo, A. 2001,
The Human Value of the Enterprise: Valuing People as Assets—Monitoring,Measuring, Managing,
Nicholas Brearly, London.Meyer, J.P. & Allen, N.J. 1984, ‘Testing the ‘side-bet theory’ of organizational commitment:
Some methodological considerations’, Journal of Applied Psychology, vol. 69, pp. 372–8.
Meyer, J.P. & Allen, N.J. 1992, ‘A three component conceptualization of organizational
commitment’, Human Resource Management Review, vol. 1, pp. 61–89.
Parker, S.K. 1998, ‘Enhancing role breadth self-efficacy: The role of job enrichment and other
organizational interventions’, Journal of Applied Psychology, vol. 83, pp. 835–52.
Parker, S. & Wall, T. 1998,
Job and Work Design: Organising Work to Promote Well-Being andEffectiveness,
Sage Publications Inc., Thousand Oaks, California.Pfeffer, J. 1998, The Human Equation: Competitive Advantage Through People, Harvard Business
School Press, Boston, MA.
Prahalad, C.K. & Hamel, G. 1998, ‘The core competence of the corporation’, in
DeliveringResults: A New Mandate for Human Resource Professionals,
ed. D. Ulrich, Harvard BusinessSchool Press, Boston, MA, pp. 45–68.
Roselander, R. 2000, ‘Accounting for intellectual capital: A contemporary management
accounting perspective’, Management Accounting, March, pp. 34–7.
Sandberg, J. 2000, ‘Understanding competence at work: An interpretive approach’,
Academy ofManagement Journal
, vol. 43, pp. 9–25.Schumaker, R.E. & Marcoulides, G.A. 1998, Interaction Effects in Structural Equation Modeling,
Lawrence Erlbaum, Mahwah, NJ.
Speier, C. & Frese, M. 1997, ‘Generalized self-efficacy as a mediator and moderator between
control and complexity at work and personal initiative: A longitudinal study in East Germany’,
Human Performance, vol. 10 no. 20, pp. 171–92.
Spreitzer, G.M. 1995, ‘Psychological empowerment in the workplace: Dimensions, measurement,
and validation’, Academy of Management Journal, vol. 38, pp. 1442–65.
Stajkovic, A.D. & Luthans, F. 1998, ‘Self-efficacy and work related performance: A metaanalysis’,
Psychological Bulletin, vol. 124, pp. 240–61.
Steers, R.M. 1977, Organizational effectiveness: A Behavioral View, Goodyear, Santa Monica,
CA.
Stewart, T.A. 1997, Intellectual Capital, Nicholas Brearley Publishing, London.
Sveiby, K.E. 1997,
The New Organizational Wealth: Managing and Measuring Knowledge-basedAssets,
Berrett-Koehler, San Francisco.Thomas, K.W. & Velthouse, B.A. 1990, ‘Cognitive elements of empowerment: ‘Interpretive’
model of intrinsic task motivation’, Academy of Management Review, vol. 15, pp. 666–81.
Tomer, J.F. 2001, ‘Understanding high-performance work systems: The joint contribution of
economic and human resource management’, Journal of Socio-Economics, vol. 30, pp. 63–73.
Ulrich, D. 1998, ‘Intellectual capital equals competence x commitment’,
Sloan ManagementReview
, vol. 39, pp. 15–26.Ulrich, D., Brockbank, W., Yeung, A.K. & Lake, D.G. 1995, ‘Human resource competencies: An
empirical assessment’, Human Resource Management, vol. 34, pp. 473–95.
Wall, T.D., Corbett, M., Martin, R., Clegg, C. & Jackson, P.R. 1990, ‘Advanced manufacturing
technology, work design, and performance: A change study’, Journal of Applied Psychology,
vol. 75, no. 6, pp. 691–7.
Wall, T.D., Jackson, P.R., & Davids, K. 1992, ‘Operator work design and robotics system
performance: A serendipitous field study’, Journal of Applied Psychology, vol. 77, no. 3,
pp. 353–62.
Wrzesniewski, A. & Dutton, J.E. 2001, ‘Crafting a job: Revisioning employees as active crafters
of their work’, Academy of Management Review, vol. 26, pp. 179–201.
0 comments:
Post a Comment